Dirichlet Prior Sieves in Finite Normal Mixtures

نویسندگان

  • Hemant Ishwaran
  • Mahmoud Zarepour
  • MAHMOUD ZAREPOUR
چکیده

The use of a finite dimensional Dirichlet prior in the finite normal mixture model has the effect of acting like a Bayesian method of sieves. Posterior consistency is directly related to the dimension of the sieve and the choice of the Dirichlet parameters in the prior. We find that naive use of the popular uniform Dirichlet prior leads to an inconsistent posterior. However, a simple adjustment to the parameters in the prior induces a random probability measure that approximates the Dirichlet process and yields a posterior that is strongly consistent for the density and weakly consistent for the unknown mixing distribution. The dimension of the resulting sieve can be selected easily in practice and a simple and efficient Gibbs sampler can be used to sample the posterior of the mixing distribution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Bayesian multivariate density estimation with Dirichlet mixtures

We show that rate-adaptive multivariate density estimation can be performed using Bayesian methods based on Dirichlet mixtures of normal kernels with a prior distribution on the kernel’s covariance matrix parameter. We derive sufficient conditions on the prior specification that guarantee convergence to a true density at a rate that is minimax optimal for the smoothness class to which the true ...

متن کامل

Posterior Convergence Rates of Dirichlet Mixtures at Smooth Densities

We study the rates of convergence of the posterior distribution for Bayesian density estimation with Dirichlet mixtures of normal distributions as the prior. The true density is assumed to be twice continuously differentiable. The bandwidth is given a sequence of priors which is obtained by scaling a single prior by an appropriate order. In order to handle this problem, we derive a new general ...

متن کامل

Approximate Dirichlet Process Computing in Finite Normal Mixtures: Smoothing and Prior Information

A rich nonparametric analysis of the finite normal mixture model is obtained by working with a precise truncation approximation of the Dirichlet process. Model fitting is carried out by a simple Gibbs sampling algorithm that directly samples the nonparametric posterior. The proposed sampler mixes well, requires no tuning parameters, and involves only draws from simple distributions, including t...

متن کامل

Hybrid Dirichlet mixture models for functional data

In functional data analysis, curves or surfaces are observed, up to measurement error, at a finite set of locations, for, say, a sample of n individuals. Often, the curves are homogeneous, except perhaps for individual-specific regions that provide heterogeneous behaviour (e.g. ‘damaged’ areas of irregular shape on an otherwise smooth surface). Motivated by applications with functional data of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002